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Abstract
We propose a classification scheme for the complete family of 1D point
interactions. To do so, we first review the solutions of the wavefunctions and
Green functions of the problem. Second, we derive the exact time-dependent
propagators in such a way that we can write the expressions for the K’s in a very
compact form. As they should, such expressions do reduce to the known results
in the literature according to the potential parameter values. Then, we analyse
in general terms how the different point interactions scatter off arbitrary initially
localized wave packets. Finally, we show that the physical features associated
with the scattering process can be used to establish a classification procedure.
Moreover, these physical characteristics are directly related to the potential
parameters leading to the many formulae for the K’s. As an application, we
present numerical calculations for Gaussian wave packets.

PACS numbers: 03.65.−w, 03.65.Ge, 03.65.Db

1. Introduction

Few classes of potentials in quantum mechanics present, at the same time, the very welcome
features of being useful to study different phenomena, and allowing exact closed analytical
solutions in a large number of situations. The general family of one-dimensional (1D) point
interactions is a good example of that. Physically, they can be faced as a singular one-
point potential of support, say, at x = 0, thus otherwise identically null along the line [1].
Mathematically, point interactions can be treated through a self-adjoint extension of the 1D
kinetic energy Hamiltonian operator [2].

From a practical point of view, these short-range potentials are used to model many
interesting problems [3], for instance, duality between bosons and fermions [4], quasi-
one-dimensional bose gases [5], different aspects in many-body interactions [6], Josephson
junctions [7], wave packet revival [8], quantum graphs [9], the implementation of quantum
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abacus [10], etc. Furthermore, since point interactions can be approximated by well-behaved
smooth potentials [11] (even in the relativistic case [12]), in principle they are realizable under
actual laboratory conditions, open a great avenue for applications.

Analysis of point interactions in a more formal sense, i.e., broadly viewed as a family
of regularized potentials characterized by a set of parameters, on the other hand are mainly
focused on their construction and generalization. For such, besides self-adjoint extensions
other methods are also employed, like functional analysis and path integrals formalism [13, 14],
global U(2) group description [4] or higher order derivatives as boundary conditions [15].

However, as far as we know there are no works dealing with a possible classification for
these potentials, from which, for example, one could distinguish different physical properties
from different point interactions. It is true that a kind of mathematical classification emerges
from a very nice work [16] (see also [17]), which addresses how the analytical expressions
for the propagators K depend on the potential parameter values. But no further interpretation
is carried out. Our aim in this contribution is to propose a general classification scheme for
non-relativistic arbitrary point interaction potentials. To do so, we first review the problem’s
complete solution for the wavefunctions and the energy Green functions. Then, we derive their
exact time-dependent propagators by considering an approach which does lead to very compact
formulae for the K’s of all possible cases, hence summarizing the previous calculations in the
literature. Finally, we show how to identify different features for the potentials in terms
of the way they scatter off wave packets, also making a connection with the mathematical
results in the first part of the paper. We should mention that the very intriguing aspects
of transmission through and reflection from point interactions have been discussed in some
particular contexts, as, time-dependent potentials [18], nonlinear Schrödinger equation [19]
and shredding by sparse barriers [20]. Nevertheless, here a general systematic analysis of
scattering by point interactions is discussed for the first time.

2. General point interactions

2.1. The problem formulation and the wavefunction solutions

In a simple heuristic picture, an arbitrary point interaction can be regarded as a zero-range
potential, thus having a single-point support, which here we assume to be the origin {0}.
Therefore, the problem can be formulated as the free Schrödinger operator H0(x) = − 1

2 d2/dx2

(defined on the line, i.e., for −∞ < x < +∞) ‘perturbed’ by such potential.
In a more rigorous construction, the full Hamiltonian H of the system can be viewed as

the self-adjoint extension of the operator H0|C∞
0 (R\{0}). As discussed in the introduction, there

are different mathematical approaches to treat the problem. In particular, a complete and deep
analysis is presented in [2]. From the standard theory of linear operators in Hilbert space
(see, for instance, the textbook [21] or the didactic review in [22]) we find that H0|C∞

0 (R\{0})
has deficiency indices (2, 2), thus leading to a family of four real parameters of possible
extensions H.

It is important to observe that when we apply self-adjoint extension techniques to a
Hamiltonian operator, we are in fact ensuring current density conservation [23]. Hence,
the above-mentioned four parameters, coming from the self-adjoint extensions, are directly
related to the boundary conditions that the wavefunction ϕ must satisfy at the potential location
x = 0. Then, the original problem is mathematically equivalent to the following [2]: to solve
H0(x)ϕ(x) = 1

2k2ϕ(x) on the line, for ϕ subjected to(
ϕ(0+)

ϕ′(0+)

)
= ω

(
a b

c d

)(
ϕ(0−)

ϕ′(0−)

)
. (1)
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Here, a, b, c and d are real with ad − bc = 1 and |ω| = 1. So, we have specific point
interactions by choosing specific values for the parameters. For instance, if a = d = ω = 1
we get from b = 0, c = 2λ and from c = 0, b = 2λ, respectively, the δ and δ′ potentials of
strength λ.

We should observe that it has been proven for point interactions [24, 25] that generally
the on-shell S-matrix at a single energy determines the boundary conditions. It allows one to
characterize such potentials in terms of their scattering properties, what is totally equivalent
to imposing (1) (see, e.g., [26]). This feature is one of our guidelines throughout the present
work.

The scattering solution for the general condition (1), represented by a plane wave of wave
number k and incident from either the left (+) or right (−), is written as [26]

ϕ
(±)
k (x) = 1√

2π
×

{
exp [± ikx] + R(±) exp [∓ ikx], x ≶ 0

T (±) exp [± ikx], x ≷ 0
, (2)

where the scattering amplitudes are given by [26, 27]

R(±) = c ± ik(d − a) + bk2

−c + ik(d + a) + bk2
, T (±) = 2 ikω±1

−c + ik(d + a) + bk2
. (3)

For a latter purpose it is quite useful to decompose the coefficients (3) into partial fractions.
Then, for b = 0 we have (κ0 = −cd/(d2 + 1))

R(±) = ±
(

d2 − 1

d2 + 1

)
+

(
2d(1±1)

d2 + 1

)
iκ0

k − iκ0
, T (±) =

(
2dω±1

d2 + 1

) (
1 +

iκ0

k − iκ0

)
, (4)

whereas for b �= 0 we find (κ± = −[(d + a) ±
√

(d − a)2 + 4]/(2b) and σ(κ±) = ∓1)

R(±) = 1 +
2 i√

(d − a)2 + 4

∑
κ=κ+,κ−

σ(κ)
(a + bκ)∓1κ

k − iκ
,

(5)

T (±) = 2 iω±1√
(d − a)2 + 4

∑
κ=κ+,κ−

σ(κ)
κ

k − iκ
.

Depending on the parameter values, the problem also admits bounded solutions. It is
a well-known fact that any pole for the scattering matrix in the upper-half of the complex k
plane (along the imaginary axis) represents an eigenvalue [28]. In our problem, such condition
corresponds to the existence of positive roots for bκ2 + κ(d + a) + c = 0, where we identify
κ = −ik. Thus, the system has: (i) one bound state when b = 0 and κ0 > 0; (ii) two (one)
bound states when b �= 0 and both (just one) κ± are greater than 0. Furthermore, regarding
(ii), if ad = 1 (i.e., c = 0) either κ+ or κ− is necessarily null. So, there is at most one bound
state if b �= 0 and ad = 1.

For κ > 0 representing one of the above-discussed cases, the corresponding bound state
solution is (σ (κ0) = sign(d), with sign(·) the signal function)

ϕκ(x) =
√

2κ(a + bκ)σ (κ)√
(d − a)2 + 4

×
{

exp[−κx], x > 0

(ω(a + bκ))−1 exp [κx], x < 0.
(6)

Finally, we observe that the exact Green functions for general point interactions have
been calculated in [26, 29]. By defining G+− for x > 0 > x0, G−+ for x0 > 0 > x,G++ for
x, x0 > 0 and G−− for x, x0 < 0, we have (with R and T given by (3))

G±∓(x, x0; k) = 1

ik
T (±) exp[ik|x − x0|],

(7)
G∓∓(x, x0; k) = 1

ik
[exp[ik|x − x0|] + R(±) exp[ik(|x| + |x0|)]].
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The above formula is correct even if the system has bound states [26]. If we define
s = −sign(x) and s0 = −sign(x0), we can regroup (7) into the single expression

G(x, x0; k) = 1

ik

[
exp[ik|x − x0|]

+

(
R(s0) +

(1 − ss0)

2
(T (s0) − R(s0) − 1)

)
exp[−ik(sx + s0x0)]

]
. (8)

2.2. The exact propagators

The propagators for general point interactions have been discussed in [16, 17]. Here, however,
we re-derive them in a different fashion. Our aim at doing so is twofold: first, to obtain more
concise expressions for the K’s, thus summarizing all the previous results in the literature;
second, to allow a straightforward way to link the different mathematical solutions for such a
class of potentials to the physical classification scheme we develop in section 3.

As is well known, the propagator is given in terms of the bound (bs) and scattering (ss)
states by

K(x, t; x0, 0) =
∑

κ

ϕ(bs)
κ (x)ϕ(bs)

κ

∗
(x0) exp

[
i
κ2

2
t

]
+

∫
dk kϕ

(ss)
k (x)ϕ

(ss)
k

∗
(x0) exp

[
−i

k2

2
t

]
.

(9)

Due to the particular form of (2) and (8) (see a discussion in [26]), and from the bound state
solutions (6), existing only when κ > 0, we can write

K(x, t; x0, 0) = 2ω(s0−s)/2√
(d − a)2 + 4

∑
κ

κσ (κ)

(a + bκ)(s+s0)/2
θ(κ) exp[κ(sx + s0x0)] exp

[
i
κ2

2
t

]

+
i

2π

∫ +∞

−∞
dk kG(x, x0; k) exp

[
−i

t

2
k2

]
, (10)

with θ(.) the Heaviside function. Obviously,
∑

κ runs over κ± (κ0) for b �= 0 (b = 0).
Now, from (4)–(5) we see that the R and T dependences on k are given only by terms of

the form 1/(k + iν). Hence, we obtain the propagator (10) from integrals which are either
Gaussians-like or of the type (ν and v reals)

I (ν, v) =
∫ +∞

−∞
dk

1

k + iν
exp[−i(k − v)2]. (11)

For ν > 0, we have [30]

I (ν, v) = −iπ exp[−i(v + iν)2]erfc

[
v + iν√

i

]
. (12)

The case ν < 0 is easily derived from the relation I (−ν, v) = −I (ν,−v). So, with the help
of erfc[−z] = 2 − erfc[z] [30], we find for an arbitrary ν that

I (ν, v) = 2π i exp[−i(v + iν)2]θ(−ν) − iπ exp[−i(v + iν)2]erfc

[
v + iν√

i

]
. (13)

The above formula for I (ν, v) has a remarkable consequence. Because of the particular
form of (10), it may seem that the analytical expression for the propagator is different if the
point interaction does or does not possess bound states. However, similarly to what happens
in the calculations for the Green functions [26, 31], the first term on the rhs of (13), present
only when there are bound states, exactly cancels out the first term on the rhs of (10) (see the
appendix). Therefore, the functional analytical expression for the propagator of a given point
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interaction is the same regardless if the potential admits or not bound state solutions. Such a
result has already been proved for the usual δ function [32], and in fact is valid in general. As
a simple example, consider the δ′ potential, which as previously mentioned, is characterized
by the free parameter b = 2λ, so that κ+ = −1/λ, κ− = 0. Thus, if λ < 0, the system has
one bound state. The analytical formula for K, nevertheless, is exactly the same for any value
of λ (see section 2.3). We should mention that this feature for K is true for a large number
of different potentials, not only for point interactions. The reasons for this are discussed, for
instance, in [31].

Regrouping the results in the appendix, we have the final exact propagators

K(x, t; x0, 0) = ω(s0−s)/2d(1−ss0)/2

[
K0(x, t; x0, 0) +

(
d2 − 1

d2 + 1

)
(s0s + s0 + s − 1)

2

×K0(x, t;−ss0x0, 0)

]
+ ω(s0−s)/2d(s0+s)/2

(
dκ0

d2 + 1

)

× exp[κ0(sx + s0x0)] exp

[
i
κ2

0

2
t

]
erfc

[
−

√
it

2
κ0 − (sx + s0x0)√

2 it

]
, (14)

for b = 0, and

K(x, t; x0, 0) = K0(x, t; x0, 0) + ss0K0(x, t;−ss0x0, 0)

+
ω(s0−s)/2√

(d − a)2 + 4

∑
κ=κ+,κ−

κσ(κ)

(a + bκ)(s0+s)/2

× exp[κ(sx + s0x0)] exp

[
i
κ2

2
t

]
erfc

[
−

√
it

2
κ − (sx + s0x0)√

2 it

]
, (15)

for b �= 0.
In a tour de force [16], different formulae for the propagator of a general point interaction

are derived according to the values of the parameters a, b, c and d. In our framework, such
many expressions can be viewed as a consequence of the different ways the quantum amplitudes
R and T are decomposed into partial fractions. However, here we are able to write down single
expressions for the K’s by using the artefact of summing over the κ’s. Also, our procedure
makes clear why the functional form of the propagators does not change if the potentials allow
bound states. Furthermore, as it should be, our results are completely analogous to those in
[16]. Indeed, in [16] the final expressions for the propagators are obtained up to the calculation
of some integrals, which once performed, lead to terms of the form exp[.] × erfc[.]. So, it is
very lengthy but straightforward to show that our general equations (14) and (15) reproduce
all the cases in [16].

2.3. Examples

To illustrate the above results, we calculate four particular cases: (i) a = d = ω = 1, b = 0
and c = 2λ; (ii) a = d = ω = 1, b = 2λ and c = 0; (iii) a = d = 0, ω = 1, b = λ and
c = −λ−1 and (iv) a−1 = d = λ, ω = −i, b = 0 and c = λ−1. As already stated, the first
two are the usual δ and δ′ potentials, respectively. Case (iii) corresponds to the boundary
conditions ϕ(x = 0+) = λϕ′(x = 0−) and ϕ′(x = 0+) = −λ−1ϕ(x = 0−), which we call the
crossed case, since the value of ϕ in one side depends solely on the value of its derivative while
in the other side of the point interaction. Finally, we call (iv) the asymmetric case [8] because
by inserting its parameter values into (3), one finds different quantum amplitudes from the left
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and the right. So, after a little algebra we have from (8) and (4)–(5) that

Gδ(x, x0; k) = 1

ik

{
exp[ik|x − x0|] +

( −iλ

k + iλ

)
exp[ik(|x| + |x0|)]

}

Gδ′
(x, x0; k) = 1

ik

{
exp[ik|x − x0|] +

(
1 +

− iλ−1

k + iλ−1

)
ss0 exp[ik(|x| + |x0|)]

}

Gcros(x, x0; k) = 1

ik

{
exp[ik|x − x0|] +

[
iλ−1

k − iλ−1
+

(
1 +

−iλ−1

k + iλ−1

)
ss0

]

× exp[ik(|x| + |x0|)]
}

Gasym(x, x0; k) = 1

ik

{
exp[ik|x − x0|] +

[
(−iλ)(1+s0)/2

1 − iλ

−i(λ2 + 1)−1

k + i(λ2 + 1)−1

+
(−iλ)(1−s0)/2

iλ − 1
+

(iλ)(1+s0)/2

iλ + 1

(
1 +

−i(λ2 + 1)−1

k + i(λ2 + 1)−1

)
ss0

]

× exp[ik(|x| + |x0|)]
}
. (16)

Then, from equations (14) and (15), we find [K0(x, t; x0, 0) = K0(x − x0)]

Kδ(x, t; x0, 0) = K0(x − x0) + Kint(|x| + |x0|, λ)

Kδ′
(x, t; x0, 0) = K0(x − x0) + ss0K0(|x| + |x0|) + ss0Kint(|x| + |x0|, 1/λ)

Kcros(x, t; x0, 0) = K0(x − x0) + ss0K0(|x| + |x0|) + Kint(−(|x| + |x0|), 1/λ)

+ ss0Kint(|x| + |x0|, 1/λ)

Kasym(x, t; x0, 0) = K0(x − x0) +

(
(−iλ)(1−s0)/2

iλ − 1
+

(iλ)(1+s0)/2

iλ + 1
ss0

)
K0(|x| + |x0|)

+

(
(−iλ)(1+s0)/2

1 − iλ
+

(iλ)(1+s0)/2

iλ + 1
ss0

)
Kint(|x| + |x0|, (λ2 + 1)−1), (17)

where

K0(v) = 1√
2π it

exp
[ i

2t
v2

]
,

(18)

Kint(v, ν) = −ν

2
exp

[
it

2
ν2 + νv

]
erfc

[√
it

2
ν +

1√
2 it

v

]
.

As it should be, the above expressions for the δ and δ′ agree with those calculated in the
literature [14, 32, 33].

3. Wave packet scattering

Having discussed the full analytical solutions for arbitrary point interactions, we next shall
present a physical picture to classify such potentials. To do so, we consider their different
features in scattering off wave packets.

3.1. Wave packet time evolution

The time evolution of an arbitrary initial state 
(x, 0) is given by


(x, t) =
∫ +∞

−∞
dx0K(x, t; x0, 0)
(x0, 0). (19)
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Thus, for each particular point interaction, one must consider the corresponding exact
propagator from (14) and (15), and then solve (19) for a certain 
(x0, 0). In most cases
the resulting integrals do not have analytical solutions, so numerics are necessary.

However, 
(x, t) for point interactions can be calculated from rather simpler integrals.
Indeed, in [18] it has been derived expressions which give the scattering solutions of a wave
packet interacting with a general compact support potential, i.e., a potential of any arbitrary
shape but identically null outside a certain region xl < x < xr . The only restriction on the
derivations is that 
(x, 0) must be well localized on one side of the potential, not overlapping
significantly with it, i.e., 
(xl < x < xr, 0) ≈ 0. Such expressions have been tested
numerically [18], leading to a remarkably good agreement with the exact formula (19).

Thus, take the Fourier representation for the initial state


(x, 0) = 1√
2π

∫ +∞

−∞
dk g(k) exp[ikx]. (20)

If the above wave packet is well localized either to the left (+) or to the right (−) of the point
interaction at x = 0, then from the amplitudes (3) we have that [18]


(x, t) = 
(free)(x, t) +
1√
2π

∫ +∞

−∞
dk g(k)

(
c ± ik(d − a) + bk2

−c + ik(d + a) + bk2

)

× exp

[
∓ikx − i

k2

2
t

]
for x ≷ 0,


(x, t) = ω±1

√
2π

∫ +∞

−∞
dk g(k)

(
2 ik

−c + ik(d + a) + bk2

)
exp

[
±ikx − i

k2

2
t

]
for x ≶ 0.

(21)

Here 
(free)(x, t) represents the evolution of 
(x, 0) in the absence of a potential. The
advantage of equation (21) relies on the fact that we can study and classify how different point
interactions scatter wave packets by directly analysing the behaviour of their reflection and
transmission quantum amplitudes.

Important simple relations are derived from (21), see [18]. For instance, PT =
± ∫ ±∞

0 dk|g(k)|2|T (±)(k)|2 gives how much of the initial wave packet localized to the
left/right of the point interaction is transmitted through the potential after an infinite
long time. Moreover, the corresponding average moment of the transmitted wave packet
is 〈p〉 = ± ∫ ±∞

0 dk k|g(k)|2|T (±)(k)|2/PT . Expressions for the reflected part of the
wavefunction are similar. Note that these formulae depend only on the modulus square
of the quantum amplitudes, which satisfy |T (+)|2 = |T (−)|2 and |R(+)|2 = |R(−)|2.

3.2. The potential parameter values and the scattering properties

Let us start with the δ and δ′. We have T (δ) = ik/(−λ + ik), R(δ) = λ/(−λ + ik)], and
T (δ′) = λ−1/(λ−1 − ik), R(δ′) = −ik/(λ−1 − ik)]; thus

P
(δ)
T =

∫ +∞

0
dk|g(k)|2 k2

λ2 + k2
, 〈p〉(δ) = 1

P
(δ)
T

∫ +∞

0
dk k|g(k)|2 k2

λ2 + k2

(22)

P
(δ′)
T =

∫ +∞

0
dk|g(k)|2 λ−2

λ−2 + k2
, 〈p〉(δ′) = 1

P
(δ′)
T

∫ +∞

0
dk k|g(k)|2 λ−2

λ−2 + k2
.

Suppose g(k) is a function peaked at some value k0. From (22) we find that larger values
of k0 lead to an increasing (decreasing) fraction of the initial wave packet tunnelling the δ

(δ′) potential. So, the δ′ interaction has a characteristic opposite to the δ and to usual barrier
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(a)

(d )

(e)

(b)

(c)

Figure 1. The transmission probabilities for the parameters: (a) b = 0, d = 1.732 05 and three
different values for c; (b) b = 1 and a = 2d = 4 (dashed curve), a = 0.495, d = 2 (continuous
curve); and (c) b = 1, a = 1/d and three different values for d. For b = 1 the rescaled inflection
points k1 and k2 are shown, respectively, in (d) and (e).

potentials in quantum mechanics (see, e.g., [34]). It indicates that we can separate the point
interactions into two distinct groups regarding their transmission properties. But recall that δ

corresponds to b = 0 and δ′ to b �= 0. Also, from section 2.2 we see that b is the most relevant
parameter to classify the analytical expressions for the K’s. Thus, we have here a first link
between the previous mathematical results and a physical feature for the potentials.

To extend the analyses, consider from (3) the transmission probabilities

|T (k, b = 0)|2 = 4k2

c2 + (d + d−1)2k2
,

(23)

|T (k, b �= 0)|2 = 4b2k2

(1 − ad)2 + (2 + a2 + d2)b2k2 + b4k4
.

For b = 0, if d, c �= 0 then |T (k)|2 increases monotonically from zero (at k = 0) to its
asymptotic value of 4/(d + d−1)2, which assumes a maximum of 1 only when d = ±1 (d = 1
is the δ interaction). Note also the symmetry regarding d ↔ 1/d. In figure 1(a) we show this
case for three different values of c and d = 1.732 05 (then 4/(d+d−1)2 = 0.75). Other values of
d display the same behaviour. For b �= 0, |T |2 has a maximum for k = kmax = √|1 − ad|/|b|,
so that

|T (kmax)|2 ≡ |T |2max = 4

2 + a2 + d2 + 2|1 − ad| . (24)

Also, in the expression for |T |2, k always appears multiplied by the parameter b. Thus, we
can analyse the transmission probability curve setting b = 1 and keeping in mind that other
values for b have as effect just to ‘rescale’ the wave number, i.e., to rescale the k-axis. If
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ad �= 1, |T (k)|2 is null at k = 0, increases to its largest value at k = kmax and then starts to
decrease asymptotically. Two examples are given in figure 1(b). For ad = 1, the maximum
is at k = 0 and |T (k)|2 decreases monotonically, as displayed in figure 1(c) for three different
values of d.

So, we have that for b = 0 or b �= 0 and ad = 1 the possible behaviours of |T |2 are
basically those seen in figures 1(a) and (c). The remaining question is if the shape of |T (k)|2
for b �= 0 and ad �= 1 can be qualitatively different from the two curves in figure 1(b), e.g.,
a very sharp increasing for small k’s (like the continuous curve) but with a relatively fast
decreasing for k > kmax (like the dashed curve). To answer to that, we observe that generally
|T |2 has two inflection points, k1 � kmax and k2 � kmax. Such points are important because
in terms of k: the first is a measure of how fast the probability transmission increases to its
maximum value; and the second indicates how fast is its asymptotic decay. In figures 1(d)

and (e) we plot, respectively, the rescaled 1 − k1/kmax and 1 − kmax/k2 as functions of a and
d for b = 1. We see that they are peaked in the neighbourhood of the curve ad = 1, quickly
decreasing to constant values (numerically of 0.6374 and 0.371 95) in the other regions of the
a–d plane. Hence, we conclude that there are just three different behaviours for |T |2 when
b �= 0. If ad = 1, we have essentially the shapes shown in figure 1(c). Note that in this case
there is only one inflection point k2 = (d2 + 1)/(

√
3d). For the product ad close to 1, but

not exactly the unit, we have a very rapid growth of the transmission probability from k = 0.
Once reaching its maximum, |T |2 decreases very slowly, continuous line of figure 1(b). This
is a consequence of the small values of k1/kmax and kmax/k2. Finally, for the other regions
of the a–d plane we have a relatively concentrate peak for |T |2 around k = kmax (the dashed
curve of figure 1(b)) because both k1 and k2 are comparable to kmax.

Summarizing, there is an important qualitative difference between b = 0, figure 1(a), and
b �= 0, figures 1(b) and (c), then supporting the distinct expressions for the propagators (14)
and (15). Moreover, for b �= 0, the case ad = 1 has the particular property of |T (k = 0)|2 �= 0
if 0 < |d| < ∞. This is also manifested in the formula for K, once for b �= 0 the propagator
has a different analytical structure if ad − 1 is or is not equal to zero. Indeed, if ad = 1,
always one of the κ± is null; therefore the sum over the κ’s in (15) instead of two has a single
term.

Now we address how an incident wave packet of mean wave number k0 tunnels different
point interactions (we focus on the transmitted case only, the reflected case follows in a similar
way). Obviously, the answer will depend on how close is kmax to k0 and how broad is the
transmission ‘window’ of |T |2 compared to the wave packet moments width �k. For explicit
calculations, hereafter we consider the initial Gaussian wave packet


(x, 0) = 1√
(2π)1/2ξ

exp

[
ik0x − (x − x0)

2

4ξ 2

]
, (25)

for which

g(k) =
√

2ξ√
2π

exp[−ξ 2(k − k0)
2 − i(k − k0)x0]. (26)

Also, note R(−), R(+) and T (−), T (+) are interchangeable simply from a ↔ d and ω ↔ 1/ω.
Thus, without loss of generality we can consider ψ(x, 0) localized only to the left of the point
interaction. In the calculations we set x0 = −10, k0 = 10 and ξ = 0.3. The initial state
(t = 0) and its free evolution (i.e., when there is no potential) for t = 1 are shown in figure 2.
In the inset we plot |g(k)|2, equation (26).

If b �= 0, the highest value that the transmission probability can assume, |T |2max in (24),
depends only on a and d, having a maximum of 1 when d = a and |d| � 1 (see figure 3(a)).
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Figure 2. An initial (t = 0) Gaussian wave packet and its free evolution at t = 1. The inset
represents the moments distribution of the initial state.

(a) (b)

(c) (d )

Figure 3. (a) The |T |2max dependence on a and d. The fraction PT of the initial wave packet which
tunnels the potential, as function of a and d, for b equal to b1, b2 and b3 (see the text) is shown,
respectively, in (b), (c) and (d).

On the other hand, kmax (which gives |T |2max) is an explicit function of b. For a specific
point interaction of defined b �= 0, a and d, |T |2max and kmax are then the two relevant
quantities to determine how much of the initial wave packet will be transmitted through
the potential. For instance, consider the three values of b: b1 = √

1 − 0.5 × 0.5/10,

b2 = √
1 − 1.5 × 0.666/10, b3 = √

1 − 0.5 × 0.5/5. The corresponding PT ’s, as functions
of a and d, are displayed in figures 3(b)–(d). For these b’s, kmax coincides with the main
moment component of the incident wave packet, k0 = 10, for, respectively, ad = 0.25 or
ad = 1.75, ad = 0.999 or ad = 1.001, and ad = −2 or ad = 4. For b = b1, figure 3(b),
the values of a and d for which kmax ≈ k0 also result in |T |2max close to 1. It explains why
in this case PT (a, b) has a shape similar to |T |2max(a, b) of figure 3(a). Since b2 is relatively
small, then kmax ≈ k0 when ad ≈ 1. For ad departing from this condition, kmax becomes large
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 4. Plots at t = 1 of �ρ and �φ, where �ρ exp[i�φ] ≡ 
(0+) − 
(0−), as functions of:
d and c when b = 0, (a)–(b); a and d when b = b1, (c)–(d), b = b2, (e)–(f ), and b = b3, (g)–(h).

compared to k0. But large k’s do not contribute significantly to the initial wave packet (see
|g(k)|2 in figure 2). So, in figure 3(c) we have a highly concentrate PT along |1 − ad| ≈ 1
for b = b2. Finally, consider b = b3 and the set of a’s and d’s leading to kmax ≈ k0. This set
generates values for |T |2max which are not so close to 1 as in the case of b = b1. Therefore,
it follows the lower maximum and a more smooth and symmetric behaviour for PT in
figure 3(d) when compared to figure 3(b).

As a final interesting aspect of point interactions, we observe that their general
mathematical definition, in terms of (1), connects the wavefunction (or its derivative) on
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

Figure 5. The same as figure 4, but for �ρ exp[i�φ] ≡ 
 ′(0+) − 
 ′(0−).

one side to both the wavefunction and its derivative on the other side of the zero-range
potential. More usual in quantum mechanics, however, is to study the continuity, say across
x = 0, of the wavefunction, by calculating 
(0+) − 
(0−), and separately of the derivative,
by calculating 
 ′(0+) − 
 ′(0−).

To exemplify it, we consider our previous Gaussian wave packet and solve (21) and its
spatial derivative numerically. For the calculations we choose t = 1, since it is the time
necessary for the centre of the initial state to reach the position x = 0 in the free evolution
case (see figure 2). For simplicity, we also set ω = 1. Obviously, 
(0−) (
(0+)) is identified
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with the first (second) relation in equation (21) for x = 0; likewise for 
 ′(0±), which are
the corresponding derivatives of (21) at x = 0. In figure 4 we show �ρ and �φ, where
�ρ exp[i�φ] ≡ 
(0+) − 
(0−), for different values of b, namely, 0, b1, b2 and b3. Similar
plots, but for �ρ exp[i�φ] ≡ 
 ′(0+) − 
 ′(0−), are presented in figure 5. For convenience,
−180 � �φ � +180 is measured in degrees. Just as a comparison, if x = 0 and t = 1 then
|
(free)| = 0.485, Arg[
(free)] = −24.687, |
(free)′| = 4.854 and Arg[
(free)′] = 65.313.

Figures 4 and 5 give us then a glance of how diverse can be the behaviour of 
(0+)−
(0−)

and 
 ′(0+) − 
 ′(0−) for different point interactions. For instance, if b = 0, cases (a)
and (b) in the figures, we find from (1) that 
(0+) − 
(0−) = (d−1 − 1)
(0−) and

 ′(0+) − 
 ′(0−) = c
(0−) + (d − 1)
 ′(0−). For d = 1 (the δ function), as expected the
wavefunction is continuous, so �ρ vanishes for any c (figure 4(a)). However, the derivative is
not continuous, as seen in figure 5(a). For d = 0, the point interaction acts as an infinite wall
and so 
(0+) = 
(0−) = 0, again leading to �ρ = 0 in figure 4(a). Moreover, in this case

 ′(0+) = c
(0−) = 0 and thus the identity 
 ′(0+) − 
 ′(0−) = −
 ′(0−) is not necessarily
null, as can be verified from figure 5(a).

4. Conclusion

In this contribution we have presented the complete exact solutions, wavefunctions, Green
functions and propagators, for the whole family of point interactions. We have derived very
compact expressions for the propagators, which do summarize all the previous results in the
literature. Also, we have discussed, mathematically, how to classify the potentials in terms of
their parameter values, leading to different functional analytical formulae for the propagators.

Then, we have proposed a possible physical interpretation for such more formal results
by studying how different point interactions scatter off wave packets. We have focused
mainly on the transmission case once the reflection follows similarly. For our purposes
we have considered only initial states well localized to one side of the potentials. So, for the
calculations we have used relation (21), which is a very good approximation for the wave packet
time evolution exact expression. The advantage of (21) is to allow a very straightforward way
to analyse the different scattering properties of different point interactions.

We hope this work will be helpful to those considering point interactions as possible
models to study varying phenomena. Since we propose a physical classification for point
interactions, our results may serve as guide in selecting the proper values of the potential
parameters to give the desired features in specific applications.
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Appendix

Here we separate the calculations for the propagators into four cases. However, we observe
that afterwards the resulting expressions can be further compacted, leading to (14) and (15).
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For b = 0, the case of x and x0 on the same side

We have from (10)

K(x, t; x0, 0) = K0(x, t; x0, 0) +

(
d2 − 1

d2 + 1

)
s0

2π

∫ +∞

−∞
dk exp[−iks0(x + x0)] exp

[
−i

k2

2
t

]

+

(
2d(1+s0)κ0

d2 + 1

)
θ(κ0) exp[κ0s0(x + x0)] exp

[
i
κ2

0

2
t

]

+

(
2d(1+s0)κ0

d2 + 1

)
i

2π

∫ +∞

−∞
dk

1

(k − iκ0)
exp[−iks0(x + x0)] exp

[
−i

k2

2
t

]
,

(A.1)

where K0 is the propagator for the free particle (see section 2.3). Note that only the last two
terms depend on the signal of κ0. Furthermore, the integral involving 1/(k − iκ0), which we
call I, can be trivially cast in the form (11), so that

I = −
(

2d(1+s0)κ0

d2 + 1

)
θ(κ0) exp[κ0s0(x + x0)] exp

[
i
κ2

0

2
t

]

+

(
d(1+s0)κ0

d2 + 1

)
exp[κ0s0(x + x0)] exp

[
i
κ2

0

2
t

]
erfc

[
−

√
it

2
κ0 − s0(x + x0)√

2 it

]
.

(A.2)

Thus, the exact propagator leads to

K(x, t; x0, 0) = K0(x, t; x0, 0) +

(
d2 − 1

d2 + 1

)
s0K0(x, t;−x0, 0) +

(
d(1+s0)κ0

d2 + 1

)

× exp[κ0s0(x + x0)] exp

[
i
κ2

0

2
t

]
erfc

[
−

√
it

2
κ0 − s0(x + x0)√

2 it

]
. (A.3)

From the above expression it is clear that the propagator for this case has the same functional
form regardless of the value of κ0, as previously stated.

For b = 0, the case of x and x0 on opposite sides

Now

K(x, t; x0, 0) = 2dωs0

(d2 + 1)

1

2π

∫ +∞

−∞
dk exp[iks0(x − x0)] exp

[
−i

k2

2
t

]

+
2dωs0κ0

(d2 + 1)
θ(κ0) exp[−κ0s0(x − x0)] exp

[
i
κ2

0

2
t

]

+
2dωs0κ0

(d2 + 1)

i

2π

∫ +∞

−∞
dk

1

(k − iκ0)
exp[iks0(x − x0)] exp

[
−i

k2

2
t

]
, (A.4)

which from (13) results in

K(x, t; x0, 0) = 2dωs0

(d2 + 1)
K0(x, t; x0, 0) +

dωs0κ0

(d2 + 1)

× exp [−κ0s0(x − x0)] exp

[
i
κ2

0

2
t

]
erfc

[
−

√
it

2
κ0 +

s0(x − x0)√
2 it

]
. (A.5)

Again we have a single formula either if the potential admits or not a bound state.
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For b �= 0, the case of x and x0 on the same side

In this case

K(x, t; x0, 0) = K0(x, t; x0, 0) +
1

2π

∫ +∞

−∞
dk exp[−iks0(x + x0)] exp

[
−i

k2

2
t

]

+
2√

(d − a)2 + 4

{ ∑
κ=κ+,κ−

κσ(κ)

(a + bκ)s0
θ(κ) exp[κs0(x + x0)] exp

[
i
κ2

2
t

]

+
i

2π

∫ +∞

−∞
dk

∑
κ=κ+,κ−

κσ(κ)

(a + bκ)s0

1

(k − iκ)

× exp[−iks0(x + x0)] exp

[
−i

k2

2
t

]}
, (A.6)

which can be rewritten as

K(x, t; x0, 0) = K0(x, t; x0, 0) + K0(x, t;−x0, 0) +
2√

(d − a)2 + 4

∑
κ=κ+,κ−

κσ(κ)

(a + bκ)s0

×
{
θ(κ) exp[κs0(x + x0)] exp

[
i
κ2

2
t

]

+
i

2π

∫ +∞

−∞
dk

1

(k − iκ)
exp[− iks0(x + x0)] exp

[
−i

k2

2
t

]}
. (A.7)

Finally, the exact propagator is given by

K(x, t; x0, 0) = K0(x, t; x0, 0) + K0(x, t;−x0, 0) +
1√

(d − a)2 + 4

∑
κ=κ+,κ−

κσ(κ)

(a + bκ)s0

× exp[κs0(x + x0)] exp

[
i
κ2

2
t

]
erfc

[
−

√
it

2
κ − s0(x + x0)√

2 it

]
. (A.8)

Note that the functional form of K is the same for any signal of the κ±.

For b �= 0, the case of x and x0 on opposite sides

Here, we find from (10)

K(x, t; x0, 0) = 2ωs0√
(d − a)2 + 4

∑
κ=κ+,κ−

κσ(κ)

{
θ(κ) exp[−κs0(x − x0)] exp

[
i
κ2

2
t

]

+
i

2π

∫ +∞

−∞
dk

1

(k − iκ)
exp[iks0(x − x0)] exp

[
−i

k2

2
t

]}
. (A.9)

Finally, from (13) we get

K(x, t; x0, 0) = ωs0√
(d − a)2 + 4

∑
κ=κ+,κ−

κσ(κ)

× exp[−κs0(x − x0)] exp

[
i
κ2

2
t

]
erfc

[
−

√
it

2
κ +

s0(x − x0)√
2 it

]
, (A.10)

once more a unique formula independent of the values of κ±.
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